
www.manaraa.com

By Yohannes S.

Chapter  9

Emerging Trends in software 
Engineering



www.manaraa.com

Contents
Introduction
Trends
Managing Complexity
Pervasive Computing
Cloud Computing
Emergent Requirements
Open source
Process Trends
The Grand Challenge

Collaborative Development
Requirements Engineering
Model-Driven Development 
Test-driven development

Tools Trends



www.manaraa.com

Introduction
Unlike ‘Engineering industries’, software 
industry is about 50 years old

Practitioners and researchers have developed 
an array of process models, technical methods, 
and automated tools in an effort to foster 
fundamental change in the way we build 
computer software

However, past experience indicates that there 
is a tacit desire to find the “silver 
bullet”
the magic process or transcendent technology that 
will allow us to build large, complex, software 
based systems easily, without confusion, without 
mistakes, without delay, without the many problems 
that continue to plague software work

But …  There is no silver bullet!



www.manaraa.com

Trends
No one can predict the future with absolute 
certainty

But it is possible to assess trends in the 
software engineering area and from those 
trends to suggest possible directions for the 
technology

Software intensive systems (SIS) have become 
the foundation of virtually every modern 
technology
Software content in virtually every product and 
service will continue to grow —in some cases 
dramatically
Software must be demonstrably safe, secure, and 
reliable
Requirements will emerge as systems evolve
Interoperability and “networkability” will 
become dominant as “mash-ups” become the norm
A “smart world” demands better, more reliable 
software



www.manaraa.com

Trends…
The trends that have an effect on software 
engineering  technology often come from the 
business, organizational, market, and cultural 
arenas. 

These “soft trends” can guide the direction 
of research and the technology that is derived 
as a consequence of research

Soft Trends
The broad characteristics of the new systems we 
build
The anthropological and sociological 
characteristics of the new generation of people 
who do software engineering work

 Hard Trends
The technical aspects of next generation 
software intensive systems
The technical directions that software 
engineering process, methods, and tools will 
take



www.manaraa.com

Soft Trends…
Connectivity and collaboration (enabled by 
high bandwidth communication)
has already led to a software teams that do not 
occupy the same physical space (telecommuting 
and part-time employment in a local context)

Globalization 
leads to a diverse workforce (in terms of 
language, culture, problem resolution, 
management philosophy, communication priorities, 
and person-to-person interaction).

An aging population 
implies that many experienced software engineers 
and managers will be leaving the field over the 
coming decade. 
The software engineering community must respond 
with viable mechanisms that capture the 
knowledge of these aging managers and 
technologists 



www.manaraa.com

Soft Trends…
Consumer spending in emerging economies will 
double to well over $9 trillion. 

a non-trivial percentage of this spending will 
be applied to products and services that have a 
digital component—that are software-based or 
software-driven

People and Teams
As systems grow in size, teams grow in number, 
geographical distribution, and culture
As systems grow in complexity, team interfaces 
become pivotal to success
As systems become pervasive, teams must manage 
emergent requirements
As systems become more open, what is a team?



www.manaraa.com

Managing Complexity
In the relatively near future, systems 
requiring over 1 billion LOC will begin to 
emerge

Consider the interfaces for a billion LOC system
to the outside world
to other interoperable systems
to the Internet (or its successor), and 
to the millions of internal components that must 
all work together to make this computing monster 
operate successfully. 

Is there a reliable way to ensure that all of 
these connections will allow information to flow 
properly?

Consider the project itself
Consider the number of people (and their locations) 
who will be doing the work
Consider the engineering challenge.
Consider the challenge of quality assurance



www.manaraa.com

Pervasive Computing (PvC)
Concepts such as 
ambient intelligence, 
context-aware applications, and 
pervasive/ubiquitous computing 

all focus on integrating software-based systems 
into an environment far broader than anything to 
date

open-world software
software that is designed to adapt to a 
continually changing environment ‘by self-
organizing its structure and self-adapting its 
behavior



www.manaraa.com

Pervasive Computing (PvC)…
First stage (PvC-1) [today]
Device mobility and ad hoc networking
Simple context awareness
Soon: smart objects implemented in devices that have 
the potential to communicate with one another

Second stage (PvC-2) [over the next decade]
Mobile user profiles that can be recognized by other 
objects
Smart objects will respond to other objects based on 
situational characteristics

Testing issues
Considerable environmental variation
Complex communication issues
Adaptive processing requirements



www.manaraa.com

Cloud Computing
Cloud Computing is a paradigm in which
information is permanently stored in
servers on the Internet and cached
temporarily on clients that include
desktops, entertainment centers, table
computers, notebooks, wall computers,
handhelds, sensors, monitors, etc.

Provides software as a service (SaaS)

Device and location independence
enables users to access systems
regardless of their location or device

Multi-tenancy enables sharing of
resources (and costs) among a large pool
of users

Demands reliability, scalability, security,
sustainability (Green IT)



www.manaraa.com

Emergent Requirements
As systems become more complex, requirements 
will emerge as everyone learns more about it, 
The system’s interoperable elements
The environment in which it is to reside, and
The objects that interact with it

This reality implies a number of software 
engineering trends.
Process models must be designed to embrace 
change and adopt the basic tenets of the agile 
philosophy
Methods that yield engineering models (e.g., 
requirements and design models) must be used 
judiciously because those models will change 
repeatedly as more knowledge about the system is 
acquired
Tools that support both process and methods must 
make adaptation and change easy.



www.manaraa.com

Open source
Open source is a development method for 
software that harnesses the power of 
distributed peer review and transparency of 
process. The promise of open source is better 
quality, higher reliability, more flexibility, 
lower cost, and an end to predatory vendor 
lock-in.

 The term open source when applied to computer 
software, implies that software engineering 
work products (models, source code, test 
suites) are open to the public and can be 
reviewed and extended (with controls) by 
anyone with interest and permission



www.manaraa.com

Process Trends
SPI frameworks - will emphasize “strategies that 
focus on goal orientation and product 
innovation.” 

Process changes will be driven by the needs of 
practitioners
and should start from the bottom up

Greater emphasis will be placed on the return-on-
investment of SPI activities

Expertise in sociology and anthropology may have 
as much or more to do with successful SPI as 
other, more technical disciplines.

New modes of learning may facilitate the 
transition to a more effective software process.

Automated software process technology (SPT) will 
move away from global process management (broad-
based support of the entire software process) to 
focus on those aspects of the software process 
that can best benefit from automation.



www.manaraa.com

The Grand Challenge
There is one trend that is undeniable—
software-based systems will undoubtedly become 
bigger and more complex as time passes. 

It is the engineering of these large, complex 
systems, regardless of delivery platform or 
application domain, the poses the “grand 
challenge” for software engineers.

Key approaches:

more effective distributed and collaborative 
software engineering philosophy

better requirements engineering approaches

a more robust approach to model-driven 
development, and 

better software tools 



www.manaraa.com

The Grand Challenge…
Collaborative Development

Today, software engineers collaborate across 
time zones and international boundaries, and 
every one of them must share information. 

The challenge over the next decade is to 
develop methods and tools that facilitate that 
collaboration.

Critical success factors:

Shared goals

Shared culture

Shared process

Shared responsibility



www.manaraa.com

The Grand Challenge…

Requirements Engineering

To improve the manner in which requirements 
are defined, the software engineering 
community will likely implement three 
distinct sub-processes as RE is conducted

improved knowledge acquisition and knowledge 
sharing that allows more complete 
understanding of application domain 
constraints and stakeholder needs

greater emphasis on iteration as requirements 
are defined

more effective communication and coordination 
tools that enable all stakeholders to 
collaborate effectively. 



www.manaraa.com

The Grand Challenge…
Model-Driven Development 
Couples domain-specific modeling languages with 
transformation engines and generators in a way 
that facilitates the representation of 
abstraction at high levels and then transforms 
it into lower levels

Domain-specific modeling languages (DSMLs)
represent “application structure, behavior 
and requirements within particular application 
domains” 
described with meta-models that “define the 
relationships among concepts in the domain and 
precisely specify the key semantics and 
constraints associated with these domain 
concepts.” 



www.manaraa.com

The Grand Challenge…
Test-driven 
development (TDD)
requirements for a 
software component 
serve as the basis 
for the creation 
of a series of 
test cases that 
exercise the 
interface and 
attempt to find 
errors in the data 
structures and 
functionality 
delivered by the 
component. 

TDD is not really 
a new technology 
but rather a trend 
that emphasizes 
the design of test 
cases before the 
creation of source 
code



www.manaraa.com

Tools Trends

Requirements engineering tools will combine 
voice recognition input with “text mining” 
to extract requirements from informal 
information sources

As pervasive computing becomes commonplace, 
design modeling tools must allow the designer 
to consider the architecture and behavior of 
the software and the physical
properties of the devices on which the 
software resides.

As test-driven development approaches gain 
momentum, tools for selecting test cases 
based on requirements and/or models must be 
developed


